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Overview

• A proof-of-concept prototype successfully 
demonstrated a collaborative scheduling 
solution for future NSAS Deep Space Network 
application

• A prototype distributed computing environment 
was established for collaborative scheduling

• Java Message Service (JMS) was used in a 
mixed Java and .NET environment for 
messaging



Agenda

• NASA Deep Space Network scheduling
• Collaborative scheduling concept
• Distributed computing environment
• Platform concerns in a distributed 

environment
• Messaging and data synchronization
• The prototype
• Conclusion



NASA Deep Space Network (DSN)

30+ missions

Scheduling is to arrange antenna times for space flight missions and ground-
based science observations (requirements) under certain restrictions (constraints)

Requirement: N tracks every M days, Complex pattern-based coverage,
Antenna arraying, Multiple Spacecraft Per Antenna, …

Constraint:
Mission: Viewperiod, Horizon mask, Setup/teardown, …
Combined: BOT, RFI, …

Ground assets: Antenna, Equipment, Downtimes, …

Goldstone, CA
Canberra, Australia
Madrid, Spain



DSN Scheduling Users
• DSN schedulers:

– Schedule owner
– Prepare maintenance schedule
– Coordination

• Space flight project schedulers:
– Provide requirements
– Negotiation and proposals
– Submit changes

• Station operators:
– Carry out schedule
– Handle contingency and anomalies



Current Scheduling System

• Mainly a manual process with software 
support

• Long-range, mid-range, near-real-time 
processes handled by different groups

• Various tools are deployed for each 
process

• Meetings to resolve conflicts



Future Scheduling System
• Seamless scheduling for all planning horizons
• A master schedule always exists, visible to all users
• Requirements and schedules are fully traceable
• Conflicts are resolved at the lowest level possible in a 

peer-to-peer fashion
• Meetings are called only as needed
• Workspace is provided to users to develop 

requirements and for what-if analysis
• Distinguish global (shared) workspace and local 

(private) workspace
• Private workspace may span a set of peers
• Need scalability (loading, # users, # assets) and 

extensibility (evolving technology)
• Intelligent assistants for decision support



Collaborative Scheduling Concept

• Decision Makers (DM): DSN schedulers, project 
schedulers, managers, operators, …

• Every one knows their specific requirements and 
constraints

• No single DM makes decisions for others 
(distributed decision making)

• DMs share information
• Shared responsibility to create a successful 

schedule
• Work as a team to resolve conflicts



Collaborative Scheduling Prototype Features

• Single master schedule shared by all users
• Conflict-aware scheduling
• Dynamic workspace/static workspace
• Private workspace with limited sharing
• Scenario management for comparison
• Synchronous/Asynchronous collaboration (e.g. conflict 

resolution, negotiation)
• Ownership and workflow management
• Data synchronization
• Messaging/notification/alert
• Intelligent assistant
• Traceability
• Distributed computing environment



Distributed Computing Environment

• Objective: To connect users and resources in a 
transparent, open, and scalable manner.
– Transparency: distributed experts are working 

together as if they are co-located
– Openness: provides each project with a continually 

open environment that enables interaction with other 
projects until a satisfactory condition exists. 

– Scalability: The solution should be able to 
accommodate changes in the number of user projects 
and ground resources in the DSN domain. 



Architecture

• Data
• Data access
• Legacy information
• Business logic
• Web services
• Messaging
• Client interfaces
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Platform concerns
in a distributed environment

• Distributed computing environment should be 
open and flexible for multiple frameworks.

• JAVA and .NET are two major players now:
– It is expected that they will reach a 50-50 market 

share by the end of this year (based on articles from 
Gartner, Meta group, ZDNet, …). Each will probably 
share 30%-40% market.

– Java: large-scale enterprise, multi-platform
– .NET: small/mid-size development, easy to use, 

performance/speed advantage
• There may be other frameworks emerging in the 

future
• Take advantage of each framework based on 

our needs



Possible Cross-Platform Solutions

• Java: through virtual machines for many 
platforms

• .NET and Mono: provides the necessary 
software to develop and run .NET client 
and server applications on Linux, Solaris, 
Mac OS X, Windows, and Unix. 

• Mainsoft: .NET to J2EE
• Others such as Qt (Trolltech) 



Messaging & Data Synchronization

• Collaboration requires instant 
communication

• All users are notified in real-time regarding 
data changes

• JMS is used for centralized messaging
• Time synchronization is the base for data 

synchronization
• Keep messages in messaging bus and 

keep data in data bus



Prototype Implementation

• Use SOAP/XML-based Web services
• Agents and backend are implemented 

using .NET
• Web services are in ASP.NET
• Clients are in Java and .NET
• JMS for messaging
• IKVM is used for .NET to communicate 

with JMS



IKVM
• IKVM.NET is an implementation of Java 

for Mono and the Microsoft .NET 
Framework.

• It includes
– a Java Virtual Machine implemented in .NET
– a .NET implementation of the Java class 

libraries and
– tools that enable Java and .NET 

interoperability.
• Using IKVM, we can take advantages from 

both Java and .NET



The Prototype
• Database

– Master schedule
– Dynamic workspace/static workspace
– Time-based ownership
– Traceability information

• Middle-tier
– Conflict-aware scheduling
– Private workspace sharing
– Scenario management for comparison
– Synchronous/Asynchronous collaboration (e.g. conflict resolution & 

negotiation)
– Workflow management
– Data synchronization
– Notification/alert

• Web services wrapper
• Clients

– Java client for schedule viewing with dynamic update under user’s control
– .NET Integrated Analysis Environment for complete analysis experience
– Web pages to view schedule



Java Client



.NET Integrated Analysis Environment



Web Page



How this works
Server(s)Server(s)

Database

1. Proposal
2. Share with B*
4. Request*

A B C

Message

5. See request
6. Approve

if it owns*

* Trigger server to send message

3. Sync

JMS

Data

Proposed change with ownership and no conflict: automatically accepted and sync
Proposed change without ownership: workflow & ownership determine approval process



Conclusion
• We have prototyped a collaborative 

environment for DSN scheduling and 
successfully proved the concept

• DSN scheduling is a system that involves 
multiple agents

• Collaborative scheme needs to be 
developed in a multi-agent environment

• Efficient communication and data 
synchronization is a key for collaboration
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